

Living with a Star

Space Environment Testbed Program

Janet Barth GSFC
Dana Brewer HQ
Ken LaBel GSFC
Billy Kauffman MSFC

NASA Technology Provider/Partnering Workshop Key Bridge Marriott, Arlington, VA August 23-24, 2000

Outline

- LWS Program Architecture SET Program Role
- Management of Solar Variability Effects on Technology
- Goals of SET Program
- SET Program Plan
- Testbed Plan
- Workshop Goals
- Breakout Sessions

Living With a Star Program Meeting Science Needs of Applications

- Serendipitous Model for Science
 - Fund basic science research solely on merit, and the results will filter down to application areas.
- Living with a Star (LWS) Model for Science
 - Users needs are used to influence the direction of science research, and the results will transform to application areas seamlessly.
- Why the change?
 - As our biosphere expands further into space, humans are increasingly vulnerable to the effects of solar variability (Space Weather) due to
 - increasing human presence in space,
 - increasing use of environmentally sensitive technologies, and
 - increasing dependence on space technology on Earth.

Three Application Areas

Space Environment Testbed Program

A LWS Program element that completes science transition to users.

Human Radiation Exposure

- Space Station, Space Exploration
- High Altitude Flight
- Space Utilization & Colonization

- Impacts on Technology
 - Space Systems
 - Communication & Navigation
 - Ground Systems

- Impacts on Life and Society
 - Global Climate Change
 - Surface Warming
 - Ozone Depletion & Recovery

- Goal of LWS
 - Develop the scientific understanding necessary for us to effectively address those aspects of the Connected Sun-Earth system that affect life and society.
- LWS Elements
 - Science Missions
 - Gather basic science data needed to achieve understanding
 - NASA/HQ science definition teams will include application scientists and engineers
 - Theory and modeling program
 - Defines environment at surface of spacecraft
 - Space environment testbed program
 - Defines environment interaction with spacecraft
 - Completes the transition from science to users
 - Close partnerships with DoD, DoE, DoI, FAA, and NSF
 - Under the aegis of the National Space Weather Program

Space Environment Testbed Program

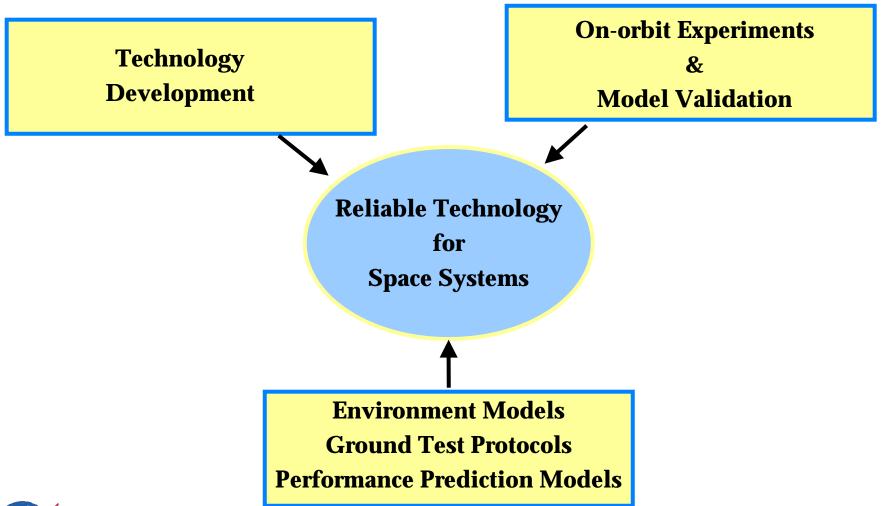
- Goal of Space Environment Test Program
 - Develop the scientific understanding necessary for us to effectively address those aspects of solar variability that affect human presence or our use of technology in space
 - Extend our understanding to ground applications (neutron effects on avionic and ground systems)
- How do we accommodate long and short term solar variability in planning capable, reliable, and cost efficient systems?
- Accommodations combine System Design and On-orbit Operation practices.
 - Astronaut exposure to radiation Spacesuit vs Storm shelter
 - Radiation effects on electronics Spacecraft bus vs Instrument
- Risk Avoidance vs Risk Management

Technology Changes Drive Approach

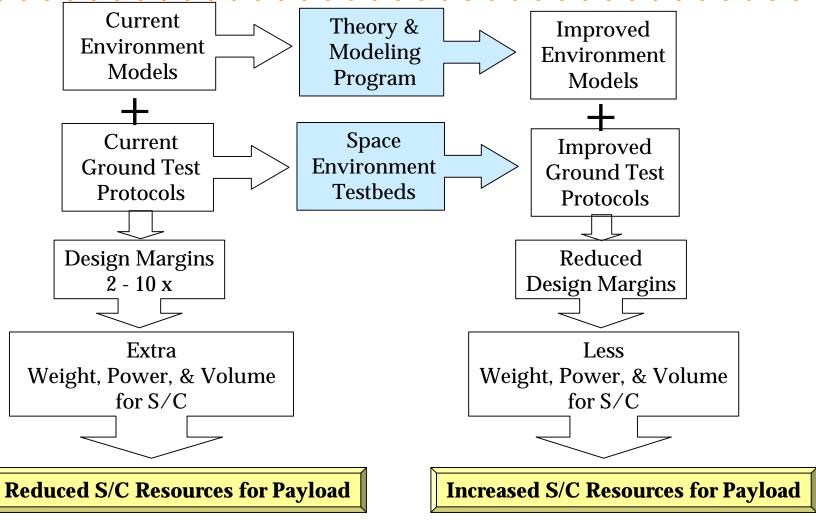
- Technology changes
 - Commercial demand for electronics
 - Space market was 50% of market Now is 0.1%!
 - Environment hardening efforts are overdriven by commercial demand
 - Demise of DoD investment in environment hardening efforts
 - Miniaturization Generates environment soft technologies
 - Reduced costs Design through operation phases
 - Demand for increased capability
- Spacecraft designers must use environment soft technologies
 - Capability Emerging technologies, COTS, Low-power, High-speed, Miniaturization, Nanotechnology
 - Availability COTS
- Trend is toward On-orbit Accommodation and Risk Management
 - Requires Space Weather forecasts

Environment Accommodations

- System Design & On-orbit Operations practices require performance predictions.
 - Need to characterize long and short term effects of the space environment.
 - Environment models (LWS)
 - Validated ground test protocol
 - Validated performance prediction technique
- Reduction of risk requires design margins
- Accuracy of models determine magnitude of the design margins
- Large design margins erode capability in increased cost of design and operations


Goals of SET Program

- Improve system engineering approach to mitigation of solar variability effects
- Implement accurate solar variability effects accommodations into spacecraft design and operations
 - Improved models increase capability (lower design margins)
 - Less mitigation overhead
 - Reduced shielding weight means reduced launch costs and increased payload
 - Improved models increase reliability
- Enable operation in higher radiation environments
- Increase technology infusion into Government/Industry programs
 - COTS, Low power, High-speed, Miniaturized, Nanotechnology



Technology Infusion for Space Systems

An SET Goal - Increase Capability

SET Program Tasks

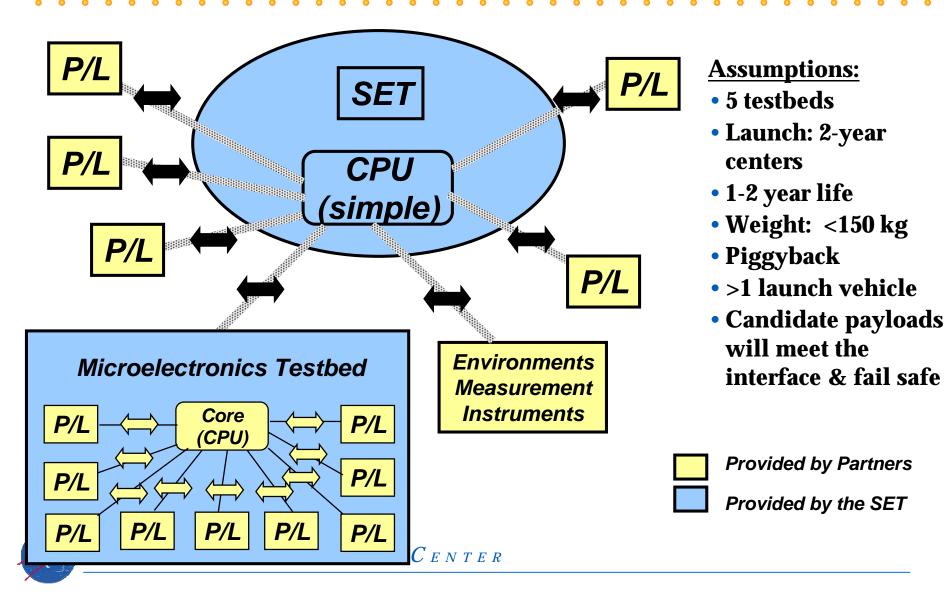
- Understand solar variability effects on emerging technologies
- Establish ground test protocols for emerging technologies and commercial off the shelf components
 - Manufacturers do not qualify COTS for use in space
- Support development of prediction techniques
- Develop on-orbit Space Weather risk management techniques
- Validate environment models (LWS & others)
 - **Environment Specification**
 - Space Weather
- Validate ground test protocols & prediction techniques
- Demonstrate instrumentation and sensors for LWS Missions

SET Program Implementation

- Establish Definition Team
- Design modular approach to testbed design to capitalize on launch opportunities
- Fly orbiting testbed every 2 years First in late 2003
- Hold bi-yearly workshops
 - Requirements definition & partnering
 - Presentations of results
- Leverage off other programs
- Fund NASA Research Announcements
 - Sensor development for tesbeds
 - Support experiment build for technologies of interest to NASA/Industry
 - Analysis of testbed data
 - Development of ground test protocols and prediction techniques
- First solicitation anticipated prior to the end of 2Q FY01

LWS/Space Environment Testbed

- Common support hardware and software to validate several subsystems or components on orbit
 - Each mission will include a suite of appropriate environment sensors (space radiation, plasma, etc.) based on the technology experiment needs and launch constraints.
- NASA provides launch, on-orbit operation, and data return.
- Standard agreement with payload partners requires partners to provide ground test data, on-orbit data after reduction, and funding for integration.
- Partnering agreement is negotiable based on NASA interest and partner contribution to launch.


Previous Testbed Programs

- CRRES 18 deg, 360/36,000 km
 - Microelectronics
 - Spacecraft charging
 - Particle measurement & dosimetry
- APEX 70deg, 254/3500 km
 - Solar cell degradation
 - Solar cell charging
 - Effects of single particle hits on SRAMs and power MOSFETs
 - Dosimetry
- MPTB Highly Elliptical
 - Microelectronics
 - Photonics
 - Poster presentation by Art Campbell of NRL with lessons learned and results
- STRV to be launched

Testbed Concept

Experiments

- Experiments take the form of materials, components, cards, sensors, or subsystems
- Technologies must show clear traceability to proposed criteria
- Potential experiment categories may include:
 - Microelectronics
 - Commercial (un-hardened)
 - Radiation Tolerant
 - Radiation Hardened
 - Photonics
 - Detector technologies
 - Materials
 - Degradation
 - Shielding properties
 - Mechanisms
 - Microelectromechanical systems (MEMS)
 - Subsystems
 - Space and induced environment tolerance methods
 - Spacecraft charging/discharging

How Does LWS Help SET?

- Task of environment characterization is shifted to science
 - Increased ability to leverage ride opportunities
 - Testbed experiments drive sensor requirements
 - Testbed experiments drive orbit requirements
 - Linear bipolars protons
 - Single event effects protons & heavier ions
 - Charging electrons
 - Environment characterization is done by appropriate science discipline
 - Understanding in addition to characterization
 - Focused research program that looks to future needs
- Commitment to a long term space testbed PROGRAM

Goals of Workshop

- Gather input for SET Program formulation
 - We are at the beginning of our process.
- Gather technology provider requirements for orbiting testbeds
 - Define the scope of the program
 - Define carrier requirements
 - Assess technology availability and readiness
 - Understand the "criteria for success" for candidate technologies
- Explore partnering opportunities for space testbeds

Workshop Products

- Identify Candidate Testbed Experiments
- Describe the State of the Art of the Technology
- Assess Timelines
 - Technology need
 - Technology readiness in 2003 to 2010 timeframe
- Establish the requirement for on-orbit testing
- Describe state of ground test protocol for the technology
- Describe experiment concept
- Identify on-orbit requirements of experiment
- Describe benefits
 - Missions
 - LWS Application Areas
- Identify Partnering Options

Technology Breakout Sessions

Materials – Degradation & Shielding Properties

Ed Long - NASA/LaRC Dave Edwards - NASA/MSFC

Spacecraft Charging

Dale Ferguson - NASA/GRC Ralph Carruth - NASA/MSFC

Microelectronics

Sam Kayali - JPL Dale McMorrow - NRL

Detector Technologies

Lee Feinberg – NASA/GSFC Mike Jones – GSFC/Orbital

LWS/SET Program Partnering

Janet L. Barth NASA/GSFC
Dana Brewer NASA/HQ
Ken LaBel NASA/GSFC
Billy Kauffman NASA/MSFC

NASA Technology Provider/Partnering Workshop Key Bridge Marriott, Arlington, VA August 23-24, 2000

LWS/Space Environment Testbed

- Common support hardware and software to validate several subsystems or components on orbit
 - Each mission will include a suite of appropriate environment sensors (space radiation, plasma, etc.) based on the technology experiment needs and launch constraints.
- NASA provides launch, on-orbit operation, and data return
- Standard agreement with payload partners requires partners to provide ground test data, on-orbit data after reduction, and funding for integration
- Partnering agreement is negotiable based on NASA interest and partner contribution to launch

SET Program Leveraging

- NASA Electronic Radiation Characterization Project ground tests
- DoD ground test programs
- Space Environment and Effects Program
- New Millennium Program
- DoD technology development programs
- NASA technology development programs
- Seeking other partnerships

Partnership Guidelines & Variations

- Guideline
 - NASA & the Payload Partner should both benefit from the partnership
- Variations from the partnering example are encouraged
 - NASA and the partner continue to benefit from the partnership
 - Variations can include trading spacecraft systems for no data access, in kind contributions in lieu of funding, etc.
- Partnership agreements can include:
 - Cooperative agreements
 - Fee for service
 - Memoranda of Agreements
 - Space Act Agreements

Three Options for Partnering

- SET Program Partners: Partners contribute to the success of the SET Program
 - Agree on objectives and requirements
 - Participate in all Program aspects
- SET Partners: Partners contribute to the success of the SET
 - Retain separate requirements & objectives
 - Obtain allocation of spacecraft resources to achieve objectives
- Payload Partners: Partners contribute "payloads" in exchange for on-orbit operation, launch, & data return
 - "Payload" includes ground test data if appropriate, on-orbit data after reduction, & funding for integration and on-orbit operations
 - Variations in definitions of "payloads" are negotiable;
 "funding" can include in kind exchanges

